Reflectances at $\lambda > 2.5 \, \mu m$ of TNOs, Centaurs, and Pluto

Joshua P. Emery
Cristina Dalle Ore
Yanga R. Fernández
Dale P. Cruikshank
David E. Trilling
John A. Stansberry
Motivation for $\lambda > 2.5 \, \mu m$

- Characterize dark material
 - Neutral and moderately red TNOs/Centaur
 - attributable to different materials (silicates, organics)
 - spectra diverge at longer wavelengths
 - Reddest TNOs/Centaur most likely organic
 - use longer wavelengths to constrain type
 - Pluto: uncertain cause of $\sim 4 \, \mu m$ spectral shape
 - perhaps tholins
- Possibly identify/characterize other ices (e.g., CH$_3$OH, CO, CO$_2$)
 - not primary goal, but must be kept in mind
IRAC observing program

- Infrared Array Camera (IRAC)
 - 3.6, 4.5, 5.8, 8.0 µm imaging
 - 5.2 arcmin FOV, 1.2 arcsec pixels

- TNO/Centaur/Trojan program
 - 30 objects (12 TNOs, 8 Cen., 10 Troj. ast.)
 - 3.6 and 4.5 µm for all, 5.8 µm for a few
 - 8 µm thermal for Trojans and two Centaurs
 - 2 observations of each object (9 to 16 dith. each)

- Pluto
 - all four IRAC bands in reflectance
 - 8 longitudes – evenly spaced
Pluto Images

pl = \frac{F_\lambda r_{AU}^2 \Delta^2}{F_{sun,\lambda} \Phi R^2}

bg subtraction of nearby stars and sky error – stdev of dithers & photon stats
5.8 and 8.0 μm have very similar light curves.

4.5 μm similar at ~70 – 200°, but distinct at ~240 - 30°.

3.6 μm somewhat similar to 5.8 and 8.0, but much lower amplitude (strong CH₄ absorption).
• 5.8 and 8.0 μm track with vis and strong CH$_4$ (but no min in 5.8)
• 4.5 μm does not follow any of the known compositional light curves

Grundy & Buie (2002)
Pluto Albedos (2)

- Overall increase in albedo to longer wavelengths
- Distinct spectral shape at ~240 - 30° due primarily to higher 4.5 µm albedo relative to 5.8 and 8.0 µm
- Tholins? Other hydrocarbons? Other ices?
Pluto Albedos (2)

![Graphs showing Geometric albedo vs Wavelength (µm) for different E. Longitudes: 200, 159, 116, 72, 26, 341, 297, 250.](image-url)
TNO / Centaur / Trojan images

Quaoar, 3.6 µm

Hektor, 3.6 µm

2.9'

Hektor, 8.0 µm
Asbolus (Centaur)

- Vis-NIR ($\lambda < 2.5 \, \mu m$):
 - low albedo (~4.5%)
 - moderately red, featureless spectrum
 - generally modeled in terms of tholins, but silicates can also adequately match
Asbolus (Centaur)

- **Vis-NIR ($\lambda < 2.5 \mu m$):**
 - low albedo (~4.5%)
 - moderately red, featureless spectrum
 - generally modeled in terms of tholins, but silicates can also adequately match

- **IRAC data**
 - most closely matches Triton tholin mixture
 - not ice or Titan tholin or pure silicates (but IRS data)

IRAC albedos are nearly identical for the two different observations (separated by 2.5 rotations)
Pholus (Centaur)

- **Vis-NIR** ($\lambda < 2.5 \, \mu m$):
 - Low albedo (~7%)
 - Extremely red
 - Requires tholins
 - Features of H_2O and CH_3OH
- **IRAC data**
 - Very low albedos at 3.6 and 4.5 μm indicate strong absorber, probably H_2O and CH_3OH, but requires further modeling
Hektor (Trojan asteroid)

- **Vis-NIR ($\lambda < 4.0 \ \mu m$):**
 - Low albedo (~3%)
 - Moderately red, featureless spectrum
 - No absorption in L-band from tholins or H$_2$O

- **IRAC data**
 - Consistent with silicate models
 - Simultaneous thermal measurement at 8μm gives p_v of 3%
Summary

• Pluto
 – Rotational variation at 4.5 μm different from p_v and $\lambda < 2.5$ μm features
 – 3.6, 5.8, and 8.0 similar to CH$_4$ light curve
 – 90° to 220° distinct spectrophotometrically from 270° to 40° (E. Long.)

• TNOs/Centaurs/Trojans
 – 30 objects in program
 • most only observable at 3.6 and 4.5 μm
 – Use to constrain dark component and surface ices
 • analysis ongoing, but initial results are promising (possibly imply organics for Asbolus, silicates for Hektor)
 – For Trojans and a few Centaurs, we detect thermal flux at 8 μm => size and albedo est.
IRS Data

- Measure emitted flux density as a function of wavelength
- Model thermal continuum and remove (divide) to produce emissivity spectrum
 - accentuates compositional features

\[R_{\text{eff}} = 49.4 \pm 3.6 \text{ km} \]
\[\rho_v = 0.040 \pm 0.013 \]
\[\eta = 0.87 \pm 0.04 \]
IRS Data

Fine-grained silicates on Hektor and Asbolus.
Uncertain feature in 1999 TD10 and 1999 RG33